参考了
看到树想到树剖,由于要取距自己到根离自己最近的标记点,刚开始想到线段树里存节点深度,查询时返回最大值。但是这样的话只能得到节点深度,无法得知节点编号,就想倍增乱搞一下,求出标记点,复杂度\(O(\log ^ {3}\;N)\)
虽然可以过但是实现有点复杂,就看了一下上面的博客
真的很强,由于树剖dfs时一条链上的编号是连续的,在此链中且深度越大线段树编号越大,所以我们可以在线段树里存当前节点的线段树编号,也达到了维护深度最大值的效果
答案就是ori [ (一条链中) MAX index] (ori为线段树编号回找树原始编号的数组)
复杂度\(O(\log ^ {2}\;N)\)
一直都是把树剖当板子用的,现在发现结合性质还有更多用处,我还要加油啊
#include#include #include #include #include using namespace std;int RD(){ int out = 0,flag = 1;char c = getchar(); while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();} while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();} return flag * out; }const int maxn = 1000019,INF = 1e9;int num,na,nume,cnt;int head[maxn];struct Node{int v,nxt;}E[maxn * 2];void add(int u,int v){ E[++nume].nxt = head[u]; E[nume].v = v; head[u] = nume; }int size[maxn],wson[maxn],dep[maxn],fa[maxn],top[maxn],pos[maxn],ori[maxn];int v[maxn];void dfs1(int id,int F){ size[id] = 1; for(int i = head[id];i;i = E[i].nxt){ int v = E[i].v; if(v == F)continue; dep[v] = dep[id] + 1; fa[v] = id; dfs1(v,id); size[id] += size[v]; if(size[v] > size[wson[id]])wson[id] = v; } }void dfs2(int id,int TP){ top[id] = TP; pos[id] = ++cnt; ori[cnt] = id; if(!wson[id])return ; dfs2(wson[id],TP); for(int i = head[id];i;i = E[i].nxt){ int v = E[i].v; if(v == fa[id] || v == wson[id])continue; dfs2(v,v); } }#define lid (id << 1)#define rid (id << 1) | 1struct sag_tree{ int l,r,max; }tree[maxn << 2];void build(int id,int l,int r){ tree[id].l = l; tree[id].r = r; if(l == r){ tree[id].max = 0; return ; } int mid = (l + r) >> 1; build(lid,l,mid); build(rid,mid + 1,r); tree[id].max = max(tree[lid].max,tree[rid].max); }void update(int id,int val, int l,int r){ if(tree[id].l == l && tree[id].r == r){ tree[id].max = l; return ; } int mid = (tree[id].l + tree[id].r) >> 1; if(mid < l)update(rid,val,l,r); else if(mid >= r)update(lid,val,l,r); else update(lid,val,l,mid),update(rid,val,mid + 1,r); tree[id].max = max(tree[lid].max,tree[rid].max); }int query(int id,int l,int r){ if(tree[id].l == l && tree[id].r == r)return tree[id].max; int mid = (tree[id].l + tree[id].r) >> 1; if(mid < l)return query(rid,l,r); else if(mid >= r)return query(lid,l,r); else return max(query(lid,l,mid),query(rid,mid + 1,r)); }void Qmax(int x, int y){ int ans = 0; while(top[x] != top[y]){ if(dep[top[x]] < dep[top[y]])swap(x, y); ans = query(1, pos[top[x]], pos[x]); if(ans){ printf("%d\n", ori[ans]); return ; } x = fa[top[x]]; } if(dep[x] > dep[y])swap(x, y); ans = query(1, pos[x], pos[y]); printf("%d\n", ori[ans]); }int main(){ num = RD();na = RD(); for(int i = 1;i <= num - 1;i++){ int u = RD(),v = RD(); add(u,v),add(v,u); } dep[1] = 1; dfs1(1,-1);dfs2(1,1); build(1,1,num); update(1,pos[1],pos[1],pos[1]); for(int i = 1;i <= na;i++){ char cmd;cin>>cmd; if(cmd == 'C'){ int x = RD(); update(1,pos[x],pos[x],pos[x]); } else{ int x = RD(); Qmax(x,1); } } return 0; }